Comparison of macular parameters in primary open angle glaucoma patients using cirrus optical coherence tomography

  • Dr. Anjali Sharma Associate Professor, Department of Ophthalmology, BMHRC, Bhopal, MP, India
  • Dr. Hemlata Yadav Associate Professor & HOD, Department of Ophthalmology, BMHRC, Bhopal, MP, India
Keywords: Macular thickness, Glaucoma, Optical coherence tomography

Abstract

Aim: To compare macular parameters using Cirrus optical coherence tomography (OCT) in primary open angle glaucoma (POAG) patients with the normal subjects. Materials and

Methods: This observational case control study included primary open angle glaucoma (POAG) patients (n = 184 eyes) and healthy subjects in the control group (n = 184 eyes). All subjects underwent detailed history, complete ocular examination. Complete ocular examination included best corrected visual acuity (BCVA), slit lamp examination, intraocular pressure (IOP), central corneal thickness, Gonioscopy, and dilated fundus biomicroscopy. Field analysis was done by white on white Humphrey Field Analyzer (Carl Zeiss). Optical coherence tomography imaging of macular area was performed using Cirrus HD- OCT. (Cirrus HD- OCT MODEL 4000, Carl Zeiss, Meditec Inc. Dublin CA, 94568).In both these groups, parameters ana¬lyzed were central macular thickness (CMT), inner inferior macular thicknesses (IIMT), inner superior macular thicknesses (ISMT),inner nasal macular thicknesses (INMT), inner temporal macular thicknesses (ITMT), and central macular volume (CMV).

Results: The POAG group had significantly decreased values of CMT, IIMT, ISMT, INMT, ITMT and CMV compared to control group, Thus, macular thickness and volume parameters may be used for making the diagnosis of glaucoma especially in patients with abnormalities of disc. Statistical analysis done using student t-test. SPSS 13.0 software was used to calculate p value. There was statistically significant difference found in all macular parameters between cases and controls. (p=0.001).

Conclusion: Macular parameters, such as total macular volume, inner macular thickness and outer macular thickness can be used in addition to RNFL thickness to aid in the diagnosis of early glaucoma using OCT, in certain conditions, where RNFL para¬meters may be distorted, such as disk abnormalities or peripapillary atrophy macular parameters may be relied upon. Macular thickness parameters showed thinning in diagnosed cases of glaucoma.

Downloads

Download data is not yet available.

References

1. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107(5):453-464. doi:10.1016/0002-9394 (89)90488-1

2. Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol. 2006;124(6):853-859. doi:10.1001/ archopht. 124.6.853

3. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma.Invest Ophthalmol Vis Sci. 1999; 40 (10): 2242-2250.

4. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300(1):5-25. doi:10.1002/cne.903000103

5. Wässle H, Grünert U, Röhrenbeck J, Boycott BB. Cortical magnification factor and the ganglion cell density of the primate retina. Nature. 1989; 341(6243): 643-646. doi: 10.1038/ 341643a0

6. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci. 2000;41(7):1774-1782.

7. Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmol. 1998;105(2):224-231. doi:10. 1016/ s0161-6420(98)92743-9

8. Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003;121(1):41-46. doi:10.1001/archopht. 121.1.41

9. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmol. 2003; 110(1):177-189. doi:10.1016/ s0161-6420 (02)01564-6

10. Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol. 2004;138(2):218-225. doi:10. 1016/j.ajo.2004.03.019

11. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmol. 2010; 117 (9): 1692-1699. doi: 10.1016/j.ophtha.2010.01.031. Epub 2010 May 20.

12. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmol. 2009; 116(12): 2305-2314. doi:10.1016/j.ophtha. 2009. 05.025. Epub 2009 Sep 10.

13. Kanadani FN, Hood DC, Grippo TM, Wangsupadilok B, Harizman N, Greenstein VC, Liebmann JM, Ritch R. Structural and functional assessment of the macular region in patients with glaucoma. Brit J Ophthalmol. 2006;90(11):1393-1397. doi: 10.1136/bjo.2006.099069.

14. Sung MS, Yoon JH, Park SW. Diagnostic validity of macular ganglion cell-inner plexiform layer thickness deviation map algorithm using cirrus HD-OCT in preperimetric and early glaucoma. J Glaucoma. 2014; 23(8):e144-e151. doi: 10.1097/IJG.0000000000000028.

15. Delbarre M, El HC, Francoz M, Zerrouk R, Marechal M, Marill AF, Giraud JM, Maÿ F, Renard JP. Diagnostic use of macular layer analysis by SD-OCT in primary open angle glaucoma. Journal FR Ophtalmol. 2013;36(9):723-731. doi: 10.1016/j.jfo.2013.08.002.

16. Arvanitaki V, Tsilimbaris MK, Pallikaris A, Moschandreas I, Minos E, Pallikaris IG, Detorakis ET. Macular retinal and nerve fiber layer thickness in early glaucoma: clinical correlations. Middle East Af J Ophthalmol. 2012;19(2):204-210. doi: 10.4103/0974-9233. 95251

17. Muscat S, Parks S, Kemp E, Keating D. Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system. Invest Ophthalmol Vis Sci. 2002;43(2):490-495.

18. Koozekanani D, Roberts C, Katz SE, Herderick EE. Intersession repeatability of macular thickness measurements with the Humphrey 2000 OCT. Invest Ophthalmol Vis Sci. 2000;41(6):1486-1491.

19. Giovannini A, Amato G, Mariotti C. The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT. Acta Ophthalmol Scand Suppl. 2002;236:34-36.

20. Lederer DE, Schuman JS, Hertzmark E, Heltzer J, Velazques LJ, Fujimoto JG, et al. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol. 2003;135(6): 838-843. doi:10.1016/s0002-9394(02)02277-8

21. Park SB, Sung KR, Kang SY, Kim KR, Kook MS. Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol. 2009;127 (12): 1603-1609.doi: 10. 1001 / archophthalmol. 2009.296
CITATION
DOI: 10.17511/jooo.2019.i05.01
Published: 2019-09-30
How to Cite
Sharma, A., & Yadav, H. (2019). Comparison of macular parameters in primary open angle glaucoma patients using cirrus optical coherence tomography. Tropical Journal of Ophthalmology and Otolaryngology, 4(5), 306-313. https://doi.org/10.17511/jooo.2019.i05.01
Section
Original Article