Neonatal EEG- an overview

  • Dr. Rabindran Consultant, Neonatologist, Billroth Hospital, Chennai, India
  • Dr. Shasidaran Senior Resident, Department of Radiology, S.R.M. Medical College, Chennai, India.
Keywords: EEG, neonatal epilepsy, Burst suppression

Abstract

Electro-encephalogram (EEG) is the best non-invasive modality for brain monitoring. As brain continues to develop and mature in neonatal period, EEG of a normal newborn varies from time to time. Wave patterns may be normal at one developmental stage and abnormal at another stage. There are many types of EEG waves like alpha, beta, gamma & delta waves. Burst suppression occurs in very sick neonates following brain damage due to asphyxia & predicts poor prognosis. Isoelectric pattern occurs in severe asphyxia, circulatory collapse, massive intracerebral hemorrhage, severe inborn metabolic deficits, CNS bacterial or viral infections, drug-induced state, hypothermia, postictal recording and in malformations like hydranencephaly or massive hydrocephalus. Grading of severity of disease condition can be done based on EEG. They can be vital in arriving etiological diagnosis. EEG distinguishes between normal paroxysmal movements from epileptic seizures. Nearly 90% of abnormal movements mimiking seizures may be nonepileptic after EEG study. Early recordings, prolonged recordings at different activity states, serial short interval EEGs increase the prognostic value of EEGs. Long-time bedside monitoring of brain function can be done by amplitude-integrated EEG (aEEG). Some rare neonatal epilepsy syndromes have characteristic EEG features. Artifacts mimicking electrical seizures include environmental interference, electrode impedence abnormalities, motion artifacts and endogenous non-cerebral potentials which can be distinguished by Polygraphy. Drugs can alter background activity. EEG is a boon for noninvasive bedside continuous monitoring of the brain. Judicious application of this technique can help in prompt management of various pathologies like seizures , encephalopathies, epilepsy and asphyxia.

Downloads

Download data is not yet available.

References

1. Löfgren N, Lindecrantz K, Flisberg A, Bågenholm R, Kjellmer I and Thordstein M. Spectral distance for ARMA models applied to electroencephalogram for early detection of hypoxia Journal of Neural Engineering 2006; 3(3) 227-34.

2. Holmes GL, Lombroso CT. Prognostic value of background patterns in the neonatal EEG. J Clin Neurophysiol. 1993 Jul;10(3):323-52.

3. Menache CC, Bourgeois BF, Volpe JJ. Prognostic value of neonatal discontinuous EEG. Pediatr Neurol. 2002 Aug;27(2):93-101.

4. M.Thordstein, N.Löfgren, A. Flisberg, R.Bågenholm, K. Lindecrantz, I. Kjellmerb. Infraslow EEG activity in burst periods from post asphyctic full term neonates. Clinical Neurophysiology. Jul 2005. Vol. 116(7), pp 1501-1506. doi.org/10.1016/j.clinph.2005.02.025.

5. Perumpillichira J. Cherian, Renate M. Swarte, Gerhard H. Visser. Technical standards for recording and interpretation of neonatal electroencephalogram in clinical practice. Ann Indian Acad Neurol. 2009 JanMar; 12(1): 58–70.doi: 10.4103/0972-2327.48869

6. Cilio, Maria Roberta. EEG and the newborn. Journal of Pediatric Neurology, vol. 7, no. 1, pp. 25-43, 2009. DOI: 10.3233/JPN-2009-0272.

7. J. Aicardi, S. Ohtahara, Severe neonatal epilepsies with suppression-burst pattern, in: Epileptic Syndromes in Infancy, Childhood and Adolescence J. Roger, P. Thomas, M. Bureau, E. Hirsch, C. Dravet, P. Genton, eds, London: John Libbey Eurotex, 2005, pp. 39–50.

8. Staudt F, Scholl ML, Coen RW, Bickford RB. Phenobarbital therapy in neonatal seizures and the prognostic value of the EEG. Neuropediatrics. 1982 Feb; 13 (1):24-33.

9. Tatsuo Takeuchi, Kazuyoshi Watanabe. The EEG evolution and neurological prognosis of perinatal hypoxia neonates. Brain and Development. Vol.11(2). pp115-120. doi.org/10.1016/S0387-7604(89)80079-8.

10. Kazuyoshi Watanabe, Fumio Hayakawa, Akihisa Okumuraa. Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain and Development. 1999. Vol .21 (6). Pp 361-372.

11. Selton D, Andre M. Prognosis of hypoxic-ischaemic encephalopathy in full-term newborns–value of neonatal electroencephalography. Neuropediatrics. 1997 Oct; 28(5):276-80.

12. Ingmar Rosén. The Physiological Basis for Continuous Electroencephalogram Monitoring in the Neonate. Clin Perinatol, Sep 2006. vol. 33 (3), pp. 593611. DOI: http://dx.doi.org/10.1016/j.clp.2006.06.013

13. M.C. Tool. Hellstrom-Westas, F. Groenendaal, P. Eken and L.S. de Vries, Amplitude integrated EEG 3 and 6 hr after birth in full term neonates with hypoxicischaemic encephalopathy, Arch Dis Child Fetal Neonatal Ed 81 (1999), F19–F23.

14. Toet MC, van der Meij W, de Vries LS, Uiterwaal CS, van Huffelen KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics. 2002 May;109(5):772-9.

15. Tao JD, Mathur AM. Using amplitude-integrated EEG in neonatal intensive care. J Perinatol. 2010 Oct; 30 Suppl:S73-81. doi: 10.1038/jp.2010.93.

16. al Naqeeb N, Edwards AD, Cowan FM, Azzopardi D.Assessment of neonatal encephalopathy by amplitude integrated electroencephalography. Pediatrics. 1999 Jun;103(6 Pt 1):1263-71.

17. Hellström-Westas L, Rosén I. Continuous brainfunction monitoring: state of the art in clinical practice. Semin Fetal Neonatal Med. 2006 Dec;11(6):503-11. Epub2006 Oct 24.

18. M Toet, L Hellstrom-Westas, F Groenendaal, P Eken, L S de Vries. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxicischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 1999 Jul; 81(1): F19–F23.

19. Holmes GL, Lombroso CT. Prognostic value of background patterns in the neonatal EEG. J Clin Neurophysiol. 1993 Jul;10(3):323-52.

20. Shah DK, Mackay MT, Lavery S, Watson S, Harvey AS, Zempel J, Mathur A, Inder TE. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008 Jun;121(6):1146-54. doi: 10. 1542/peds.2007-1839.

21. Nabbout R, Soufflet C, Plouin P, Dulac O. Pyridoxine dependent epilepsy: a suggestive electroclinicalpattern. Arch Dis Child Fetal Neonatal Ed. 1999 Sep;81(2):F125-9.

22. Mikati MA, Feraru E, Krishnamoorthy K, Lombroso CT. Neonatal herpes simplex meningoencephalitis: EEG investigations and clinical correlates. Neurology. 1990;40:1433–7.

23. Chen PT, Young C, Lee WT, Wang PJ, Peng SS, Shen YZ. Early epileptic encephalopathy with suppression burst electroencephalographic pattern--an
analysis of eight Taiwanese patients. Brain Dev. 2001 Nov; 23(7):715-20.

24. Ohtahara S, Yamatogi Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol. 2003 Nov-Dec;20(6):398-407.

25. H. Hassanpour,M. Mesbah,B. Boashash. Time– frequency feature extraction of newborn EEG seizure using SVD-based techniques. EURASIP Journal on Applied Signal Processing 2004:16, 2544–2554

26. S. Ashwal, S. Schneider, Brain death in the newborn, Pediatrics 84 (1989), 429–437.

27. A.M. Bye, D. Lee, D. Naidoo, D. Flanagan, The effects of morphine and midazolam on EEGs in neonates. Apr 1997 Vol.4(2), pp 173–175. DOI: http:// dx.doi. org/10 .1016/S0967-5868(97)90069-2

28. van den Berg E, Lemmers PM, Toet MC, Klaessens JH, van Bel F. Effect of the "InSurE" procedure on cerebral oxygenation and electrical brain activity of the preterm infant. Arch Dis Child Fetal Neonatal Ed. 2010 Jan; 95 (1):F53-8. doi: 10.1136/adc.2008.156414. Epub 2009 Aug 13.
CITATION
DOI: 10.17511/jooo.2017.i02.04
Published: 2017-12-31
How to Cite
R, R., & S, S. (2017). Neonatal EEG- an overview. Tropical Journal of Ophthalmology and Otolaryngology, 2(2), 32-36. https://doi.org/10.17511/jooo.2017.i02.04
Section
Review Article